Quantum interference in acyclic systems: conductance of cross-conjugated molecules.

نویسندگان

  • Gemma C Solomon
  • David Q Andrews
  • Randall H Goldsmith
  • Thorsten Hansen
  • Michael R Wasielewski
  • Richard P Van Duyne
  • Mark A Ratner
چکیده

We calculate that significant quantum interference effects can be observed in elastic electron transport through acyclic molecules. Interference features are evident in the transmission characteristics calculated for cross-conjugated molecules; significantly, these effects dominate the experimentally observable conduction range. The unusual transport characteristics of these molecules are highlighted through comparison with linearly conjugated and nonconjugated systems. The cross-conjugated molecules presented here show a large dynamic range in conductance. These findings represent a new motif for electron transfer through molecules that exhibit both very high and very low tunneling conductance states accessible at low bias without nuclear motion. In designing single molecule electronic components, a large dynamic range allows a high on/off ratio, a parameter of fundamental importance for switches, transistors, and sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phonon interference effects in molecular junctions.

We study coherent phonon transport through organic, π-conjugated molecules. Using first principles calculations and Green's function methods, we find that the phonon transmission function in cross-conjugated molecules, like meta-connected benzene, exhibits destructive quantum interference features very analogous to those observed theoretically and experimentally for electron transport in simila...

متن کامل

Charge transfer versus molecular conductance: molecular orbital symmetry turns quantum interference rules upside down.

Destructive quantum interference has been shown to strongly reduce charge tunneling rates across molecular bridges. The current consensus is that destructive quantum interference occurs in cross-conjugated molecules, while linearly conjugated molecules exhibit constructive interference. Our experimental results on photoinduced charge transfer in donor-bridge-acceptor systems, however, show that...

متن کامل

Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives.

Electronic factors in molecules such as quantum interference and cross-conjugation can lead to dramatic modulation and suppression of conductance in single-molecule junctions. Probing such effects at the single-molecule level requires simultaneous measurements of independent junction properties, as conductance alone cannot provide conclusive evidence of junction formation for molecules with low...

متن کامل

Cross-conjugation and quantum interference: a general correlation?

We discuss the relationship between the π-conjugation pattern, molecular length, and charge transport properties of molecular wires, both from an experimental and a theoretical viewpoint. Specifically, we focus on the role of quantum interference in the conductance properties of cross-conjugated molecules. For this, we compare experiments on two series of dithiolated wires. The first set we syn...

متن کامل

Probing the conductance superposition law in single-molecule circuits with parallel paths.

According to Kirchhoff's circuit laws, the net conductance of two parallel components in an electronic circuit is the sum of the individual conductances. However, when the circuit dimensions are comparable to the electronic phase coherence length, quantum interference effects play a critical role, as exemplified by the Aharonov-Bohm effect in metal rings. At the molecular scale, interference ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 130 51  شماره 

صفحات  -

تاریخ انتشار 2008